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1 Introduction

This report reviews the scientific progress and accomplishments sup-
ported by ARO Grant W911NF-06-1-0182: Fundamentals of Wireless
Networks: Connectivity and Capacity.

Results on connectivity center on the cyclic cellular automata model,
focussing on the maintaining the topologically connected network of
active ad-hoc nodes in a lerge-scale distributed network.

Results on capacity are based on three main information-theoretic
models: wireless network relay channels, cognitive channels, and wire-
tap channels.
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2 Connectivity

2.1 Introduction

A low-cost, low-energy networks of nodes deployed in large numbers
is a characteristic of many proposals relying on the distributed self-
organizing, self-adjusting structures aimed at achiveing global func-
tions. In our context, the networks are the ad-hoc communication
networks, whose function is to maintain uninterrupted flow of informa-
tion from sources to sinks. One area of applications of high potential
is given by the wireless sensor networks (WSN), but the generality of
the approaches makes the overall construct rather application agnostic
and extremely flexible.

Limited energy is usually accompanied by limited memory, a small
computaion capability, and a small communication range. To adapt
to these constraints, a sleep-wake protocol is commonly implemented,
whereby the nodes alternate between a low-power sleep mode and a
relatively high-power wake mode. The overall system life-time is pro-
portional to the ratio of the total duration of sleep periods to the total
duration of active periods, as taken over the duty cycle of this process.
A distributed algorithm defined by a local rule coordinates sleep-wake
schedules via communications between neighboring nodes within com-
munication range; these communications account for a large part of
total energy consumption. Our specific approach focuses on minimal-
ist self-organizing techniques, i.e., those making minimal demands on
resources, and communication requirements in particular.

In [1, 35], we introduced a class of cellular automata to serve as
such a technique. The specific automaton was a generalization of
the classical Greenberg-Hastings cyclic cellular automaton on Z2 to
a continuous, but still synchronous version on R2. In [2], serving as
the underlying text for this section, we make a fundamental exten-
sion to an asynchronous automaton, which we shall refer to simply as
the asynchronous Greenberg-Hastings automaton, or AGHA, and in
so doing we eliminate the extensive communication overhead of dis-
tributed synchronization algorithms, both in the initialization stage
and in re-synchronization stages created by excessive phase drift or by
the redeployment of damaged or expired nodes. By means of extensive
experimentation, we illustrate both similarities and certain striking
changes in behavior relative to the synchronous GHA. We further il-
lustrate refinements of the techniques for designing AGHAs to meet
pre-specified modes of behavior. The planting of seeds, or artificial
nucleating centers, provides the tool for solving these inverse problems
of cyclic cellular automata.

The plan of this section is as follows. First, we define GHA and
shows how it can be used in sleep-wake scheduling. This presentation
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is followed by a brief discussion of relevant background in sleep-wake
scheduling. The phase and signaling models are introduced in the next
subsection. There we also illustrate the dynamics of the asynchronous
Greenberg-Hastings Automaton in R2 under these models. Depending
on parameters, striking contrasts can be seen in the wave dynamics;
explanations of these effects and the basic differences in synchronous
and asynchronous wave dynamics are given in the following subsec-
tion. Final subsection of this part presents samples of the results of
extensive experiments with a focus on the properties of scalability,
fault tolerance, effectiveness against intelligent intruders, and seamless
accommodation of obstacles in the node field. We conclude by summa-
rizing our findings and by illustrating design of sweep techniques with
desirable properties related to intruder detection, forced exit, and en-
trapment.

2.2 The Greenberg-Hastings Automaton

Each unit square aligned with the regular lattice, is a cell(or site) in
a cellular automaton; cell x has a discrete value, typically an integer,
as its state, and a neighbor set Nx defining the cells with which x
can “communicate.” For example, a commonly studied neighbor set
is the von Neumann set consisting of x and the adjacent cells to the
north, east, south, and west of x. The state transitions of all cells
are synchronized, i.e., they occur at discrete time steps, and they are
defined by a universal local rule. Specifically, the transition at cell x
at time step t depends on the states of the cells in its neighborhood
Nx at time t.

A special class of automata called cyclic cellular automata is use-
ful in the design of sleep-wake protocols, and within this class the
Greenberg-Hastings Automaton (GHA), defined as follows. Let ξt(x)
be the state of cell x at time step t.

The state transitions of cell x ∈ Z2 in the basic GHA follow the
local rule:

1. If ξt(x) = i > 0, then ξt+1(x) = i+ 1 mod k.

2. If ξt(x) = 0 and at least 1 neighbor in Nx is in state 1, then
ξt+1(x) = 1; otherwise, there is no change in state: ξt+1(x) = 0.

The state of a cell is said to be incremented automatically if it is
nonzero, but only by contact if it is 0.

Discretized ad-hoc networks are not normally useful models of ac-
tual deployments; instead, the nodes locations should be modeled as
points in R2, and in the applications (scales) of interest here, point
(cell) locations are reasonably taken as i.i.d. uniform random draws
from the deployment terrain, and hence, at the scales of interest here,
they will be well approximated by Poisson patterns in two dimensions.
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(a) t = 0 (b) t = 10

(c) t = 15 (d) t = 50

Figure 1: Greenberg-Hastings Automaton in R2 (k=20)

Cell x now has a neighborhood Nx defined by all those cells within a
disk of given (communication) radius centered at x.

The new GHA model was introduced in [1] and shown to have a
periodic behavior very similar to that of the model on Z2. Figure 1 il-
lustrates typical cellular-automata graphics in which states are mapped
one-to-one onto colors, and a finite, but large, square represents R2.
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Unless stated otherwise, default parameters are unit node density, and
respective communication and sensing ranges of rc = rs = 1.5. Snap-
shots of the evolution of a GHA with 20 states are shown. Bear in mind
the convention: the color black always denotes state 0. The initial state
is a sample from the uniform product measure on {0, . . . , k−1}. This is
commonly called primordial soup with reference to models in biology.
Emergent behavior begins by a convergence to state 0 (color black),
where the cells stay until they find a neighbor in state 1, an event that
will eventually occur by the periodic, expanding circular-shaped figures
that originate at groups of cells forming nucleating centers. For pur-
poses of mathematical analysis, it is often useful to “close” the finite
field by joining opposite edges, passing to the torus as the underly-
ing deployment terrain. This mathematical convenience is bought at a
price, however, and we shall just ignore edge effects, as the scale of our
experiments and the applications of interest is large enough to make
these effects relatively negligible.

Turning to our communication application, point-cells are now re-
lay nodes; state 0 represents the wake state in which the node is actively
communicating with the active neighbors by passing the messages ac-
cording to a routing protocol; and state 1 is the state in which the node
signals to its small vicinity – essentially, to all nodes within the com-
munication range that it is in state 1, so that those neighbors in state
0 can transition into state 1. States 2 through k − 1 are called sleep
states since no signalling or communication takes place in these states.
Figure 2 shows just the nodes in state 0 at t = 100 with k = 12 and
k = 20. They form many small, generally curved line segments when
k = 12 as in Figure 2(a) but they form the closed periodic waves when
k = 20 as in Figure 2(b). In the appendix Figure 13 helps visualize
wave dynamics by giving closely spaced snapshots of the state. Note
the important fact that chatter with neighbors, a high-energy overhead
function, can be turned off completely once stable periodic behavior is
reached, which happens quickly for the designs of practical interest.

One critical application of the proposed sleep-wake protocol dceals
with the wireless sensor networks. With reference to Figure 2(b) con-
sider the occurrence of an event (a fire, appearance of an intruder,
. . . ) at some point of the deployment terrain. It will be detected
(i.e., sensed) immediately if it occurs within sensing range of a sensor
in state 0. Otherwise, it will be sensed as soon as the next wave of
wake sensors gets within sensing range. This may never happen if the
wake sensors have large enough gaps between them, but designs where
detection is almost certain to happen are easily found by taking the
sensor density or sensing range large enough. Of course, if the “event”
can move, then it can avoid detection, but eventually it must move out
of the sensor field. We cover these details in later sections.

Nucleating centers, i.e., natural seeds, play a key role. If k is cho-
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(a) k=12 (b) k=20

Figure 2: Greenberg-Hastings Automaton in R2 (k = 12, 20)

sen too large (greater than about 26) then from primordial soup the
GHA will fixate almost certainly with all nodes permanently in the
wake state, i.e., state 0 (the graphic will be all black). In this case
there is no natural nucleation in the emergent behavior of the GHA.
Classical results show an exponential scaling of the probability of fix-
ation relative to the number, k, of states and the communication area
defining neighbor sets. For purposes of the sensor-system application,
our interest focuses on values of k that are indeed beyond those for
which nucleating centers can be expected to form naturally. In this
case, artificial seeds can be planted as a natural, easily implemented
extension of the GHA. This technique, introduced in [1], is covered in
Section 4 and greatly extended in subsequent sections, especially for
intruder entrapment.
Background. The literature dealing with sleep-wake protocols is
large, both for synchronous systems [6,34,43,46,50,51,55,62,64] and
asynchronous [7,22,49,58,60,63] systems. These protocols can be clas-
sified by general objectives and by the constraints under which they
must operate. For example, there exist protocols requiring that link
connectivity be preserved [49,64] and others that require full, or nearly
full, coverage of the field at all times [7,22,34,46,50,55,58,60,62,64], and
yet others that constrain the delivery of the data to centralized clearing
points [6]. The techniques used vary from simple randomization meth-
ods [22,34,49] to LP-formulations of sleep-schedule optimization [6,43]

6



and the domatic partition approach [46,50]. As is to be expected, the
implementation complexity of optimization techniques is substantially,
and in applications of interest here, prohibitively greater than that of
a minimalist cellular automaton.

Some protocols [60, 63, 64] implement wake-node density control,
while others [51] implement ”sweep” protocols in much the same spirit
as the technique proposed here but much more demanding of resources,
i.e., much less of a minimalist protocol for maximizing system lifetime.
Wake-node wave-propagation provides a flexible and systematic trade-
off between energy consumption and the density of communication
active states, and thus the speed of the message propagation.

Many Self organizing schemes were introduced for sleep scheduling.
They are similar in that those schemes use distributed algorithm to
achieve self organization. However most schemes are different in that
they are based on the clustering or they consider full coverage of wake
sensors. Note that our scheme is flat protocol and provides partial
coverage with guaranteed detection delay. Many references can be
found in [3, 8, 16,23].

2.3 The Asynchronous Greenberg-Hastings Automa-
ton

2.3.1 Phase and Signaling Models

The nodes in the Asynchronous GHA (AGHA) share the same local
rule as in the synchronous case; and they are controlled by the same
parameters, i.e., the number of states, the communication radius, the
cycle length and the node density. We adopt the restricted model of
asynchronous systems in which node-clock cycles have constant dura-
tions, but differ in their relative phases. We adopt a standard, baseline
probability model: The phases of the node clocks are chosen indepen-
dently and uniformly at random from a discrete set; these sets will be
varied and will be stipulated in due course. To keep simulation state
spaces small (and experiments not too time-consuming), the size of
these sets is kept as small as possible consistent with their purpose,
i.e., the size is not taken so small that the properties being studied
become unclear or ambiguous.

Compared to synchronous ad-hoc network systems, the nature of
the partial overlapping in clock cycles amongst neighbors plays a cru-
cial role in shaping the wake-nodes waves, since successful communi-
cation must be made during the overlaps. We propose two different
signaling techniques, with different energy requirements, to investigate
how clock phase affects the dynamics and performance of an ad-hoc
system.

Our first proposed signaling technique is one in which a node in

7



state 1 broadcasts a signal, a short low-energy burst consistent with the
communication range, at both the beginning and end of the clock cycle.
This type-1 clock structure increases the number of communication

(a) t = 0 (b) t = 20

(c) t = 30 (d) t = 60

Figure 3: Asynchronous Greenberg-Hastings Automaton in R2 (k=20)

signals by a factor of two, but it also increases the chance of successful
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communication when there are large phase differences; in this sense
it is a best-case assumption relative to “catching” a neighbor in state
1, but a worst-case assumption in terms of energy dissipation (in that
two signals are used instead of just one).

Our second scheme for comparison is simpler and uses less energy:
a node in state 1 broadcasts a signal in the middle of the clock cycle.
Adopting this type-2 scheme decreases the number of communications,
keeping signaling at a minimum, but the needed overlap duration be-
comes larger, i.e., as in the previous section, at least half of a clock
cycle must be overlapped to make a successful communication.

2.3.2 Experiments

We begin with a coarse set of possible overlaps: Assume that the phases
of the node clocks are chosen so that fractional clock-period overlaps
are independently and uniformly distributed on {0, 1/5, 2/5, 3/5, 4/5}.

(a) Type-1 Clock Structure (b) Type-2 Structure

Figure 4: AGHA with Different Clock Structure (k=20)

Figure 3 illustrates the sequential evolution of the AGHA with
40,000 nodes placed independently and uniformly at random within
a 200×200 field. The process is started in primordial soup with k = 20
and rc = 1.5, and type-2 signaling is used. We note that, at this point,
there are no striking differences; similar to the (synchronous) GHA,
most cells experience a delay in state 0 waiting for a neighbor in state
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Figure 5: Wake Node Band

1; see Figure 3(b) for an illustration of the asynchronous case. Once
a neighbor in state 1 appears, cells start to generate periodic circular
wave patterns (or patterns corresponding to the periphery of intersect-
ing circles) just as the synchronous GHA did. see (Figure 3(d)).

Next, consider the type-1 “double” signaling scheme. The snapshot
of equilibrium in Figure 4 reveals an interesting property of type-1
signaling: the width of a wake-node band is enlarged, and the gaps
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time 1 2 3 4 5
[t1, t2) 1 0 0 0 0
[t2, t3) 1 1 0 0 0
[t3, t4) 1 1 1 0 0
[t4, t5) 1 1 1 1 0
[t5, t6) 2 1 1 1 0
[t6, t7) 2 2 1 1 1

...
...

...
...

...

Table 1: Node States

between successive waves are correspondingly enlarged. However, as
noted earlier the clock-cycle k-periodicity is preserved, as it must be.
Thus, the broader wake-node bands propagate faster than in the (syn-
chronous) GHA, so all nodes still come awake every k-th clock cycle.
A more detailed explanation of wake-node bands and their variation
with parameters is given in the next section. Inspection of Figure 13
shows that the type-2 asynchronous node system differs little from the
synchronous case. We also explain this somewhat unexpected phe-
nomenon in the next section.

2.4 Detailed Wave Dynamics

Figure 5 illustrates the conditions under which wide wake-node bands
are formed, when we assume type-1 signaling and large k (the system
fixates without seeding). The figure considers the nodes in a regular,
one dimensional array orthogonal to the direction of wave motion, as
this framework greatly simplifies the discussion without obscuring the
effects to be brought out. Initially, prior to time t1 in the figure, all
nodes fall into state 0 and wait for a state-1 signal to propagate from
a seed. At time t1, node 1 responds to a state-1 signal received in
the previous clock cycle, increases its state to 1, sends out its first
state-1 signal, and remains in state 1 until t5. At t2, node 2 responds
to the state-1 signal from node 1, transitions to state-1, sends out its
first state-1 signal and remains in the 1 state until t6. This process
continues until nodes 1 through 4 are all in state-1 for the last quarter
clock cycle of node 1; at this point of the wave dynamic, the width
of the wave is created by 4 nodes. The state as a function of time is
summarized in Table 1.

For greater widths, we need greater densities, as suggested by Fig-
ure 6. Figure 6 illustrates how density affects the widths of wake-node
bands. The parameters are k = 30, a communication radius of 1.5,
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(a) Density=1 (b) Density=4

Figure 6: Wake Bands with Different Node Density

nodes are distributed uniformly at random over a 150×150 deployment
field, there is a centrally located artificial seed, and initial (fractional)
phases are selected uniformly at random from {0, 1/40, . . . , 39/40}. Re-
sults are shown for the node densities 1 and 4. The wavefronts for the
higher density are much thicker, as is immediately obvious. The waves
are far apart (too far apart to show two of them on the same figure
for density 4) and move correspondingly faster in keeping with the
local k-periodicity. Interestingly, this method of producing thick and
dense wave fronts provides another approach to ensuring high-security
blocking of mobile intruders.

Returning to the similarity between the behavior of synchronous
and type-2 asynchronous systems, consider the comparison available
in Figure 7, where the node field is 150× 150, the density is 2, k = 30,
rc = 1.5 and there is a single center seed. Phases (fractional overlaps)
are multiples of 1/5. Recall that the synchronous system evolves from
primordial soup in three stages: a reset stage in which almost all nodes
end up in state 0 waiting for a state-1 signal to propagate from the
seed, a stabilization stage during which the wave dynamics are devel-
oped, and finally an equilibrium stage in which practically all nodes
are effectively independently periodic in a global, deterministic pro-
cess. For any of the nodes, approximate the number of its neighbors
with a phase overlap sufficient for communication by a Poisson random
variable with mean given by the product of the density, the commu-
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nication area, and the fraction of phases giving sufficient overlap for
successful communication between two neighbors: 2 · πr2c · 0.6 = 8.482.
Thus, the probability that there are no such neighbors is 2 × 10−4.
As a crude estimate, one can expect the fixation rate to be well below
one in a thousand. By our earlier arguments, the thickening of the
wave fronts established earlier in this section can be expected to be
perceptible for type-2 asynchronous systems only for sufficiently large
densities, as in the figure where the density is 2. For densities of 1
or less, the increased width becomes imperceptible. By this informal
argument then, one should expect that the synchronous and the type-2
asynchronous wave dynamics will look roughly the same with a small
thickening of the wave front for high densities.

(a) Synchronous System (b) Asynchronous System

Figure 7: Comparison Between Synchronous and Asynchronous System. (1
single-phase seed at the center of field with k=30 and density=2.0.)

As in the synchronous case, for energy conservation, one prefers
large k. The locations of nucleating centers (seeds) will be unpre-
dictable as will be the wake-state wave action they induce, but good
performance is assured. Note that fixation is in state 0 so that there
will be no sacrifice in surveillance, but the lifetimes of the nodes will be
reduced. On the other hand, in the interests of low energy consump-
tion and hence a low duty cycle 1/k, we will want to take k large. And
k does not have to be very large for practical field sizes (k > 25 will do
when we have density 1, rc = 1.5 and a 100×100 field). Planting seeds,
i.e., deploying artificial nucleation centers, is a handy and effective so-
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(a) Single-Phase 1 Seed (b) Single-Phase 2 Seeds

(c) Bi-Phase 2 Seeds (d) Bi-Phase 2 Seeds: Wake states

Figure 8: Planting artificial seeds with k=30

lution for larger k. Any collection of nodes containing a k−cycle serves
as a seed. As the term suggests, a k-cycle in the asynchronous node
system is a sequence of nodes x0, . . . , xk−1, who are synchronized each
other, such that, for all k = 0, . . . , k−1, ξt(xi) = i and x(i+1)mod k is in
communication range of xi. Clearly, a k-cycle, which cycles endlessly
through the k states, spending one clock period in each state, is trivial
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to put together, and renders fixation impossible
Implementations of this technique can be the same as in synchronous

system, and performance will remain unchanged except for the wave
speed-width details as described above: thicker, faster waves, but with
k- periodic equilibria remaining an invariant. Figure 8 illustrates the
new but very similar dynamics. Figure 8(a) and 8(b) shows the dynam-
ics of system at time step 200 with k = 30 when 1 and 2 artificial seeds
with the same state space are planted and function independently.

To enhance connectivity, or to speed up message propoagation, the
use of bi-phase nodes in a two-seed asynchronous system is a technique
worth considering. One obtains results like those in Figure 8(c) and
8(d). Recall that the nodes are now designed to maintain two out-of-
phase AGHAs simultaneously, which means a (near) doubling of the
wake-node duty cycle.

2.5 Experimental Results

As pointed out earlier, the expected delay, ED , is the same as in the
synchronous case (because of the invariant k-periodicity of a stabilized
system). In [1] it is shown that

ED ≈
(

1− 2rs
krc

)
krc − 2rs

2rc

Experiments for the asynchronous system with a center seed gave
Table 2, which shows, as in the synchronous case, excellent agreement
between the experimental results and the conservative analytical esti-
mate.

We tested the asynchronous system with a stationary link-failure
probability p to illustrate how link failures affect system dynamics.
Link failure probabilities p = .1, .3 are considered in Figure 9. As p

k Clock Structure 1 Clock Structure 2 Estimates

15 6 7 6

20 8 8 8

25 10 11 11

30 13 13 13

35 16 15 16

Table 2: Estimates of Average Delay (in clock cycles)
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(a) p = 0.1, density=2 (b) p = 0.3, density=2

Figure 9: Link Failures in Asynchronous System. (Single seed with k=30)

increases, the wake-node wavefronts sustain more “hollows” owing to
failures to successfully receive broadcasts from neighboring nodes in
state 1. The effects on performance of the AGHA are practically the
same as on the GHA, although it should be noted that wake nodes in
the AGHA can receive more state-1 signals from neighboring nodes, no
matter where the latter are relative to the direction of wave motion;
they can be ahead or behind – only the relative phases matter. It is
clear from the figures that substantial robustness in the presence of
link failures requires substantial node densities.

Seamlessly accommodating obstacles is another property of the
GHA that is preserved in the AGHA. To confirm this fact, we again
experimented with one big obstacle (40 × 40) and three small obsta-
cles (20 × 20) in a 200 × 200 node field. Figure 10 shows that, as
in the synchronous system, our proposed scheme can gracefully work
around both the one huge obstacle and the small obstacles; the system
continues to pump out periodic waves sweeping the area outside the
obstacles; the wake nodes sweep the obstacle along its boundary and
close up the waves beyond the obstacle.

As stated earlier, one advantage of the asynchronous system is that
nodes can be redeployed without a costly re-synchronization in an area
where nodes have expired through damage or old age. The operation of
newly deployed nodes is identical to that of nodes in the initial phase.
Newly deployed nodes increase their states until they reach state 0 and
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wait for a state 1 signal. Once the new nodes receive this signal, they
increase their state to 1 and subsequently become a part of the periodic
wake-node waves. Figure 11 shows some snapshots of system behavior
when nodes are redeployed on a small scale. In the overall field, when
it was initialized, 40,000 nodes were deployed in 200 × 200 field with
k = 40. One artificial seed is planted at the center of the node field
and wake nodes (in state 0) are displayed in black. Figure 11(a) shows
the node system as it stabilizes in periodic waves. As illustrated in
Figure 11(b), assume certain nodes die (identified as red points with
arrows)in two square areas, one in the upper-left and one in the lower-
right region of the field. These inert areas can be created by external
forces such as local flooding, crushing by vehicles, etc. As nodes die,
the sensor system adapts itself to the new configuration and begins a
self-healing process. Wake node waves sweep along the boundary of the
inert areas and keep propagating wake states without major distortions
in the dynamics, as in Figure 11(c). To recover the surveillance in the
inert areas, new nodes are deployed at random; these eventually reach
state 0, and wait for a state-1 signal, as in Figure 11(d). As wake-
node waves arrive, new nodes start to catch state-1 signals, coalesce
with incoming waves, and knit together a new wave dynamic much like
the original. This self-organizing process is complete around 50 clock
cycles after redeployment, as shown in Figure 11(f).

This above illustration is typical of small areas of node damage,
but as the areas become rather large, the self-organized knitting to-
gether of new structures can introduce rather chaotic wave formations,
depending on area size and the relative position of the damaged area
and the field’s artificial seeds. Thus, for larger areas, it is best simply
to reset the entire node field, so that it regenerates a regular wave dy-
namic. This reset control will be part of the centralized re-deployment
mechanism

2.6 Conclusion

We have presented a self-organizing, asynchronous sleep-wake proto-
col for sensor systems that are low-cost, self-healing and long-lived
without sacrificing essential properties like fault tolerance and smooth
accommodations of obstacles. The method yields an attractive mech-
anism for trading off system life-time with detection delay. We have
shown by comparisons with results in [1] that asynchronous systems
are at least as efficient as synchronous ones and have properties, such
as wave thickening, that actually improve on performance. By ap-
propriate placement of seeds in systems that otherwise fixate, many
different wave patterns may be explored. Against the circular waves of
the center-seed system, intruders can not penetrate the field “on the
ground” beyond a short distance from the boundaries. An intruder
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dropping into the field at any location away from regions near the
boundaries is forced to exit staying between consecutive waves if he is
to remain undetected.

A state of a total entrapment protocol is illustrated in Figure 12.
In the figure, waves are moving up from the bottom and down from the
top; while orthogonal waves are moving similarly in a different phase
from right to left and left to right. Points of intrusion like the one shown
are trapped within a quadrilateral formed by four approaching waves.
The intrusion is shown to take place at the center of the field. If it had
been chosen off center and the intruder wished to delay entrapment
as long as possible, he would have moved toward the center at an
appropriate speed, whereupon the same entrapment event would have
occurred as shown in the figure.

Appendix 1

Figure 13 gives some idea of wave motion by showing closely spaced
snapshots, viz., every 4 time steps; the parameters are those of Figure
1. The emergent behavior can be seen by focusing on the seed locations
and watching evolution from the wave nucleations.
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3 Capacity

We treat three topics that deal with information-theoretic models:

1. Wireless relaying for half-duplex nodes; results for this topic are
half-duplex versions of results in [29, Sec. 4.2].

2. Wireless relaying on lines; results for this topic were developed
in the papers [28,33,54].

3. Cognitive channels; results for this topic appeared in [40].

The first topic completes results appearing in [29, Sec. 4.2]. The moti-
vation for considering the second channel is to understand the capac-
ity limitations of single-path communication, which a common form
of communication in networks. The third channel allows one to study
user cooperation. Our progress for these three areas is reviewed indi-
vidually below.

3.1 Wireless Relaying Rates for Half-Duplex Nodes

Consider the model of [29, Sec. 4.2] but now with a half duplex relay
(see also [29, Sec. 4.3] that treats half-duplex relays from a different
perspective). As we will see, the full-duplex and half-duplex cases give
basically the same insights.

We begin by reminding the reader of the models used in [29, Sec. 4.2].
The source is node 1, the relay is node 2, the destination is node 3, and
the distance between nodes u and v is duv. The geometry is shown in
Fig. 14 where the source and destination nodes are a distance d13 = 1
apart, and the relay is a distance d12 = |d| to the right of the source,
and a distance d23 = |1− d| to the left of the destination. A negative
d means that the relay is to the left of the source. We remark that
we are here considering distances duv that are less than one, so we are
normalizing the source–destination distance to be unity, and including
long-range attenuation in the power constraints. We consider chan-
nels that exhibit one of three kinds of fading: (1) no fading; (2) fast
uniform-phase fading; and (3) fast Rayleigh fading. That is, for every
clock tick we have complex channel outputs

Y2 =
H12

|d|α/2 X1 + Z2, (1a)

Y3 = H13X1 +
H23

|1− d|α/2 X2 + Z3 (1b)

where X1 and X2 are the source and relay inputs, respectively, Y2 and
Y3 are the relay and destination channel outputs, respectively, and
Z2 and Z3 are independent Gaussian random variables with variance
N . For no fading, the Huv are constants. For uniform-phase fading,
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the Huv are independent and uniform over {ej φ : φ ∈ [0, 2π)}. For
Rayleigh fading, theHuv are independent and Gaussian with zero mean
and unit variance. The constant α is the attenuation exponent.

We consider the following basic cooperative coding strategies:

1. amplify-and-forward (AF)

2. classic multi-hop

3. compress-and-forward (CF)

4. decode-and-forward (DF).

We consider only strategies where the destination knows ahead of time
when the relay is listening or talking, i.e., we ignore the (small) gains
of mode modulation, see [29, Sec. 4.3]. However, we do optimize over
the amount of time that the relay listens and talks. We consider the
attenuation exponent α = 3 and choose the power of every node to be
P1 = P2 = P3 = 10 and the noise variance at every node to be N = 1.

3.1.1 No Fading

Suppose there is no fading, i.e., Huv = 1 for all u, v. The numerical
results are shown in Fig. 15. Not surprisingly, we find that DF is
optimal when the relay is near the source, and CF is optimal when
the relay is near the destination. Classic multi-hop performs poorly
because α = 3 is too small. The curve labeled “PDF” gives the rates
of a partial-decode-and-forward strategy where the source sends an new
message in every block (including the blocks where the relay transmits)
and the source and relay do not correlate their transmitted signals. The
main point is that PDF can improve on DF.

The curve labeled “coherent AF” shows the rates when the relay
listens half the time, and the source repeats its transmissions when
the relay talks to permit coherent combining at the receiver. The
curve labeled “noncoherent AF” has the source transmitting a new
independent message while the relay talks. The relay transmit power
was optimized for both cases. Observe the “peaky” behavior of the
DF, CF, and classic multi-hop curves near d = 0 and d = 1.

3.1.2 Phase Fading

Suppose now that there is phase fading, i.e., the Huv are independent
and uniform over {ej φ : φ ∈ [0, 2π)}. The rates of PDF, CF, and classic
multi-hop do not change. However, we see from Fig. 16 that the DF
rates (first solid red curve) drop below that of PDF (solid magenta
curve) and that DF, PDF, or CF (second solid red curve) are optimal
when the relay is near the source. Otherwise, the insights from the
no-fading case remain the same.
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3.1.3 Rayleigh Fading

Consider next Rayleigh fading, i.e., the Huv are independent and Gaus-
sian with zero mean and unit variance. For simplicity, we choose the
fraction of time the relay listens and transmits to be 1/2. The resulting
rates are shown in Fig. 17. Again, the results are consistent with what
we have observed for phase fading above. Perhaps the only surprise
is that non-coherent AF performs very well when the relay is near the
destination (but recall that we have constrained the relay to listen and
transmit half the time).

3.2 Wireless Relaying on Lines

The following model applies to wireless problems in the common sit-
uation where every node has a dedicated tone and/or time slot for
transmission. If nodes use the same tone at the same time then one
should modify the model to include the effects of interference.

Consider a line network with node capacity constraints and broad-
casting as shown in Fig. 18. “Supernode” u, u = 1, 2, 3, 4, consists of
two nodes ui, uo where the “i” represents “input” and “o” represents
“output”. Node uo of supernode u transmits over a broadcast channel
(BC) P (yu−1, yu+1|xu) to nodes (u − 1)i and (u + 1)i of supernodes
u−1 and u+ 1, respectively. The BC outputs at node ui of supernode
u are thus

Yu−1,u = fu−1,u(Xu−1, Zu−1) (2)
Yu+1,u = fu+1,u(Xu+1, Zu+1) (3)

for some functions fu−1,u(·) and fu+1,u(·), and where the Zu, u =
1, 2, . . . , N , are statistically independent of each other and the Xu.
We permit the noise random variables Zu to be common to Yu,u−1

and Yu,u+1; this lets us treat any type of memoryless BC. The X ′u in
Fig. 18 represent the bits transmitted through supernode u, and we
require that H(X ′u) ≤ Cu where H(X) is the entropy of X.

For N supernodes u = 1, 2, . . . , N , let

u→ {D} (u) = {v(1), v(2), . . . , v(L)} (4)

denote a multicast traffic session, where the v(1), . . . , v(L) are supern-
odes. The meaning is that a source message is available at supernode u
and is destined for supernodes in the set {D} (u). We associate sources
with input nodes labeled ui and sinks with output nodes labeled uo.

An achievable rate region for these line networks was established
in [33] by building on the capacity results of [54], and this work is
reviewed below. Summarizing, it was shown in [33] that if all BCs are
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either orthogonal or physically degraded, then a “butterfly” binary lin-
ear network code achieves capacity and progressive d-separating edge-
cut (PdE) bounds [30,31] provide the converse. We further extend the
capacity results of [33] to both deterministic and broadcast erasure
line networks. The line network defined by (2)-(3) is said to be deter-
ministic if Zu is a constant for all u. The line network is said to be
broadcast erasure if Zu = (Zu,u−1, Zu,u+1) has alphabet {0, 1}× {0, 1}
for all u, and fu,u−1(x, (0, zu,u+1)) = fu,u+1(x, (zu,u−1, 0)) = x and
fu,u−1(x, (1, zu,u+1)) = fu,u+1(x, (zu,u−1, 1)) = ∆ where ∆ is an era-
sure symbol.

3.2.1 Traffic Sessions

We use notation from [33]. Let m(u→ {D} (u)) and R(u→ {D} (u))
denote the message bits and rate, respectively, of traffic session u →
{D} (u). Consider node u. We collect the bits traversing node u’s edge
into six sets:

m
(u)
LR = {m(i→ {D} (i)) : 1 ≤ i ≤ u− 1,

{D} (i) ∩ {u+ 1, . . . , N} 6= ∅} (5)

m
(u)
RL = {m(i→ {D} (i)) : u+ 1 ≤ i ≤ N,

{D} (i) ∩ {1, . . . , u− 1} 6= ∅} (6)
mu,LR = {m(u→ {D} (u)) : {D} (u) ∩ {1, . . . , u− 1} 6= ∅},

{D} (u) ∩ {u+ 1, . . . , n} 6= ∅}} (7)
mu,R = {m(u→ {D} (u)) : {D} (u) ∩ {1, . . . , u− 1} = ∅},

{D} (u) ∩ {u+ 1, . . . , n} 6= ∅}} (8)
mu,L = {m(u→ {D} (u)) : {D} (u) ∩ {1, . . . , u− 1} 6= ∅},

{D} (u) ∩ {u+ 1, . . . , n} = ∅}} (9)
mu = {m(i→ {D} (i)) : {D} (i) = {u}} (10)

The idea is that m(u)
LR and m

(u)
RL represent traffic flowing from left-to-

right and right-to-left, respectively, through node u. Similarly, mu,LR,
mu,R, and mu,L represents traffic originating at node u and destined
for nodes on both the left and right, right only, and left only, re-
spectively. Finally, mu represents traffic destined for node u only. The
non-negative message rates are denoted R(u)

LR, R(u)
RL, Ru,LR, Ru,R, Ru,L,

and Ru. We can now write the capacity result from [54] as follows.

Theorem 1 The capacity region of a line network with N nodes is
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defined by the bounds, for all u,

max(R(u)
LR, R

(u)
RL) +Ru,LR +Ru,R +Ru,L +Ru ≤ Cu (11)

R
(u)
RL +Ru,LR +Ru,L ≤ Cu,u−1 (12)

R
(u)
LR +Ru,LR +Ru,R ≤ Cu,u+1 (13)

Remark 1 The converse in [54] follows by PdE arguments [31] and
achievability follows by using rate-splitting, routing, copying, and “but-
terfly” binary linear network coding.

3.2.2 Achievable Rates with Broadcast

We separate channel and network coding, which sounds simple enough.
However, every BC receiver has side information about some of the
messages being transmitted, so we will need the methods of [32]. We
further use the theory in [37] to describe our achievable rate region.

We begin by splitting mu,R and mu,L into two parts each, namely
the respective [m′u,R,m

′′
u,R] and [m′u,L,m

′′
u,L]. The rates of m′u,R and

m′′u,R are the respective R′u,R and R′′u,R, and similarly for R′u,L and
R′′u,L. We choose a joint distribution PSuTuWuXu

(·) and generate a
codebook of size

2n
“
R

(u)
LR+R

(u)
RL+Ru,LR+R′u,R+R′u,L

”

with codewords

wu

(
m

(u)
LR,m

(u)
RL,mu,LR,m

′
u,R,m

′
u,L

)
by choosing every letter of every codeword independently using PWu(·).
Next, for every such wu, we choose 2n(R′′u,R+RTu ) codewords tu by
choosing the ith letter tu,i of tu via the distribution PTu|Wu

(·|wu,i)
where wu,i is the ith letter of wu. We label tu with the arguments of
wu, m′′u,R, and a “bin” index from {1, 2, . . . , 2nRTu}. Similarly, for ev-
ery wu we generate 2n(R′′u,L+RSu ) codewords su generated via PSu|Wu

(·)
and label su with the arguments of wu, m′′u,L, and a “bin” index from
{1, 2, . . . , 2nRSu}.

Next, for every six-tuple of messages, the encoder tries to find a
pair of bin indices such that (wu, tu, su) is jointly typical according to
one’s favorite flavor of typicality. Using standard typicality arguments
(see, e.g., [37]) a typical triple exists with high probability if n is large
and

RSu
+RTu

> I(Su;Tu|Wu). (14)

Once this triple is found, we transmit a signal xu that is generated via
PXu|SuTuWu

(·).
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The receivers use joint typicality decoders to recover their messages.
They further use their knowledge about some of the messages (side-
information). The result is that decoding is reliable if n is large and
(see [32,37])

R′′u,L +RSu < I(Su;Yu,u−1|W ) (15)

R
(u)
RL +Ru,LR +R′u,R +Ru,L +RSu

< I(SuWu;Yu,u−1) (16)

R′′u,R +RTu < I(Tu;Yu,u+1,|W ) (17)

R
(u)
LR +Ru,LR +Ru,R +R′u,L +RTu

< I(TuWu;Yu,u+1). (18)

Finally, we use Fourier-Motzkin elimination (see [37]) to remove
RSu

, RTu
, R′u,L, R′u,R, R′′u,L, and R′′u,R from the above expressions and

obtain the following result.

Theorem 2 An achievable rate region for a line network with broad-
casting and node constraints and with N nodes is given by the bounds,
for any choice of P (su, tu, wu, xu) and for all u,

max(R(u)
LR, R

(u)
RL) +Ru,LR +Ru,R +Ru,L +Ru ≤ Cu (19)

R
(u)
RL +Ru,LR +Ru,L ≤ I(SuWu;Yu,u−1) (20)

R
(u)
LR +Ru,LR +Ru,R ≤ I(TuWu;Yu,u+1) (21)

R
(u)
RL +Ru,LR +Ru,R +Ru,L

≤ I(SuWu;Yu,u−1) + I(Tu;Yu,u+1|Wu) (22)

R
(u)
LR +Ru,LR +Ru,R +Ru,L

≤ I(TuWu;Yu,u+1) + I(Su;Yu,u−1|Wu) (23)

R
(u)
RL +R

(u)
LR + 2Ru,LR +Ru,R +Ru,L

≤ I(SuWu;Yu,u−1) + I(TuWu;Yu,u+1)− I(Su;Tu|Wu). (24)

Remark 2 The bound (19) is the same as (11).

Remark 3 The bounds (20)-(24) are similar to the bounds of [37,
Theorem 5]. However, a few rates are “missing” here because nodes
u− 1 and u+ 1 know m

(u)
LR and m(u)

RL, respectively, when decoding.

3.2.3 Orthogonal Channels

A BC PY1Y2|X is called orthogonal if one can write X = (X1, X2) and
PY1Y2|X = PY1|X1PY2|X2 (see [12, p. 419]). In fact, if all N broadcast
channels in Fig. 18 are orthogonal, then we should recover Theorem 1
from Theorem 2.
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Let Xu = (Xu,u−1, Xu,u+1). We choose Su = Xu,u−1, Tu = Xu,u+1,
Wu = 0 and Xu,u−1, Xu,u+1 independent so that (20)-(24) reduce to

R
(u)
RL +Ru,LR +Ru,L ≤ I(Xu,u−1;Yu,u−1) ≤ Cu,u−1 (25)

R
(u)
LR +Ru,LR +Ru,R ≤ I(Xu,u+1;Yu,u+1) ≤ Cu,u+1. (26)

We have equality in the rightmost inequalities in (25) and (26) by opti-
mizing over Xu,u−1 and Xu,u+1. The region of Theorem 1 is therefore
achievable. The converse follows by using the same steps as in the
converse of Theorem 1. Thus, Theorem 2 reduces to Theorem 1, as
desired.

3.2.4 Physically Degraded Channels

A BC PY1Y2|X is said to be physically degraded if either

X − Y1 − Y2 or X − Y2 − Y1

form Markov chains (see [12, p. 422]). Consider Theorem 2 and suppose
that X−Yu,u−1−Yu,u+1 forms a Markov chain for all u (the direction
of degradation can be adjusted either way for any u for the capacity
theorem below). We choose Su = Xu, Tu = 0 and the bounds (19)-(24)
reduce to

max(R(u)
LR, R

(u)
RL) +Ru,LR +Ru,R +Ru,L +Ru ≤ Cu (27)

R
(u)
LR +Ru,LR +Ru,R ≤ I(Wu;Yu,u+1) (28)

R
(u)
RL +Ru,LR +Ru,R +Ru,L ≤ I(Xu;Yu,u−1) (29)

R
(u)
LR +Ru,LR +Ru,R +Ru,L

≤ I(Wu;Yu,u+1) + I(Xu;Yu,u−1|Wu) (30)

We prove the following result.

Theorem 3 The capacity region of a line network with physically de-
graded BCs is achieved by separating channel and network coding. For
example, if X − Yu,u−1 − Yu,u+1 forms a Markov chain for all u, then
the capacity region is defined by (27)-(30) for any choice of P (wu, xu)
for all u.

To prove this theorem, we note that the bound (27) is based on an
extension of PdE bounds to mixed wireline/wireless networks [30]. The
rest of the converse follows by modifying the steps of [17]. Let {S} be
a subset of the set {V } of network supernodes and let {S}C be the
complement of {S} in {V }. We define

Y{S},{T} = {Yu,v : u ∈ {S} , v ∈ {T}} (31)
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and Yu,{S} = Y{u},{S} and Y{S},u = Y{S},{u}. Let Mu,L be the message
random variable corresponding to mu,L, and similarly for the other
messages. The messages are independent and have entropy equal to n
times their rate, where n is the number of times we use each BC. Let
M({S}) be the set of messages originating at nodes in {S}, and let
MC
u,L to be the set of all network messages except for Mu,L.
For (28), we let {S} = {1, 2, . . . , u} and

W̃u,i =
(
MC
u,L, Y

i−1
u,u+1

)
(32)

where Y i−1
u,u+1 = Yu,u+1,1, Yu,u+1,2, . . . , Yu,u+1,i−1 and the third sub-

script index denotes time. Fano’s inequality [12, p. 38] bounds the
rates for reliable communication as

n(R(u)
LR +Ru,LR +Ru,R)

≤ I
(
M

(u)
LRMu,LRMu,R;Y n{S},{S}CM({S}C)

)
= I

(
M

(u)
LRMu,LRMu,R;Y nu,u+1|M({S}C)

)
=

n∑
i=1

I
(
M

(u)
LRMu,LRMu,R;Yu,u+1,i|M({S}C)Y i−1

u,u+1

)
≤

n∑
i=1

I
(
MC
u,LY

i−1
u,u+1;Yu,u+1,i

)
= nI

(
W̃u,Q;Yu,u+1,Q|Q

)
≤ nI (Wu;Yu,u+1) (33)

where the fourth step follows because

I(A;B|C) ≤ I(AC;B) ≤ I(ACD;BE)

for any random variables A,B,C,D,E. The fifth step follows by
defining Q to be a time-sharing random variable that is uniform over
1, 2, . . . , n, and the last step follows by defining Wu = (W̃u,Q, Q) and
Yu,u+1 = Yu,u+1,Q.
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Next, consider (29) and let {S} = {u, u + 1, . . . , N}. For reliable
communication, we bound

n(R(u)
RL +Ru,LR +Ru,R +Ru,L)

≤ I
(
M

(u)
RLMu,LRMu,RMu,L;Y n{S},{S}CM({S}C)

)
= I

(
M

(u)
RLMu,LRMu,RMu,L;Y nu,u−1|M({S}C)

)
≤ I

(
M({S});Y nu,u−1Y

n
u,u+1|M({S}C)

)
=

n∑
i=1

H
(
Yu,u−1,iYu,u+1,i|Y i−1

u,u−1Y
i−1
u,u+1M({S}C)

)
−H (Yu,u−1,iYu,u+1,i|Y i−1

u,u−1Y
i−1
u,u+1M({V }))

≤
n∑
i=1

H (Yu,u−1,iYu,u+1,i)−H (Yu,u−1,iYu,u+1,i|Xu,i)

= nH (Yu,u−1,QYu,u+1,Q|Q)− nH (Yu,u−1,QYu,u+1,Q|Xu,Q)
≤ nI (Xu,Q;Yu,u−1,QYu,u+1,Q)
= nI (Xu;Yu,u−1) (34)

where the fourth step follows by Markovity, and the final step follows
by defining Xu = Xu,Q, Yu,u−1 = Yu,u−1,Q, and by using the Markov
chain due to physical degradation.

Finally, for (30) we use (33) and {S} = {u, u+ 1, . . . , N} to bound

n(R(u)
LR +Ru,LR +Ru,R +Ru,L)

≤ nI (Wu;Yu,u+1) + I
(
Mu,L;Y n{S},{S}CM({S}C)

)
(35)
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and

I
(
Mu,L;Y n{S},{S}CM({S}C)

)
≤ I (Mu,L;Y nu,u−1Y

n
u,u+1M

C
u,L

)
= I

(
Mu,L;Y nu,u−1Y

n
u,u+1|MC

u,L

)
=

n∑
i=1

H
(
Yu,u−1,iYu,u+1,i|Y i−1

u,u−1Y
i−1
u,u+1M

C
u,L

)
−H (Yu,u−1,iYu,u+1,i|Y i−1

u,u−1Y
i−1
u,u+1M({V }))

≤
n∑
i=1

H
(
Yu,u−1,iYu,u+1,i|W̃u,i

)
−H

(
Yu,u−1,iYu,u+1,i|Xu,iW̃u,i

)
= nI

(
Xu,Q;Yu,u−1,QYu,u+1,Q|W̃u,QQ

)
≤ nI (Xu;Yu,u−1Yu,u+1|Wu)
= nI (Xu;Yu,u−1|Wu) (36)

where the last step follows by physical degradation. Collecting the
bounds (33)-(36) proves Theorem 3.

3.2.5 Physically Degraded Gaussian Channels

The additive white Gaussian noise (AWGN) physically degraded BC
has (see [18])

Yu,u−1 = Xu + Zu,u−1 (37)
Yu,u+1 = Yu,u−1 + Z ′u,u+1 (38)

where Xu is real with power constraint
∑n
i=1X

2
u,i ≤ nPu for all u,

and Zu,u−1 and Z ′u,u+1 are independent Gaussian random variables
with variances Nu,u−1 and N ′u,u+1, respectively (again, the direction
of degradation can be swapped for any u without changing the results
conceptually).

The capacity region is given by Theorem 3 and it remains to op-
timize P (wu, xu). The variances of Yu,u−1 and Yu,u+1 are at most
Pu +Nu,u−1 and Pu +Nu,u−1 +N ′u,u+1, respectively, so the maximum
entropy theorem (see [12, p. 234]) gives

I(Wu;Yu,u+1) ≤ 1
2

log(2πe(Pu +Nu,u+1))− h(Yu,u+1|Wu) (39)

I(Xu;Yu,u−1) ≤ 1
2

log(1 + Pu/Nu,u−1) (40)

I(Xu;Yu,u−1|Wu) ≤ h(Yu,u−1|Wu)− 1
2

log(2πeNu,u−1) (41)
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where Nu,u+1 = Nu,u−1 + N ′u,u+1 and h(Y |W ) is the differential en-
tropy of Y conditioned on W . Observe that

1
2

log(2πeNu,u+1) ≤ h(Yu,u+1|Wu)

≤ 1
2

log(2πe(Pu +Nu,u+1)) (42)

so there is an αu, 0 ≤ αu ≤ 1, such that

h(Yu,u+1|Wu) =
1
2

log(2πe(αuPu +Nu,u+1)). (43)

Furthermore, a conditional version of the entropy power inequality
(see [12, p. 496]) gives

h(Yu,u+1|Wu) = h(Yu,u−1 + Z ′u,u+1|Wu)

≥ 1
2

log
(
e2h(Yu,u−1|Wu) + 2πeN ′u,u+1

)
. (44)

Collecting the bounds, and inserting (43) and (44) into (41), we have

I(Wu;Yu,u+1) ≤ 1
2

log
(

1 +
(1− αu)Pu

αuPu +Nu,u+1

)
(45)

I(Xu;Yu,u−1) ≤ 1
2

log(1 + Pu/Nu,u−1) (46)

I(Xu;Yu,u−1|Wu) ≤ 1
2

log(1 + αuPu/Nu,u−1). (47)

But we achieve equality in (45)-(47) by choosing

Xu = Vu +Wu (48)

where Vu and Wu are independent Gaussian random variables with
zero-mean and variances αuPu and (1−αu)Pu, respectively. The opti-
mal P (wu, xu) is therefore zero-mean Gaussian, and the capacity region
is given by inserting (45)-(47) with equality into (28)-(30), and taking
the union over the rates permitted by varying αu.

3.2.6 Discussion

The capacity results in Sec. 3.2.3 and Sec. 3.2.4 imply that one may as
well use decode-and-forward (DF) relaying, i.e., amplify-and-forward
(AF) and compress-and-forward (CF) do not increase rates (see [29,
Ch. 4]). In the next sections, we extend this insight to deterministic
and broadcast erasure channels. However, AF and CF strategies are
useful for other classes of BCs.
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3.2.7 Deterministic Networks

The following theorem gives the capacity of line networks with deter-
ministic BCs.

Theorem 4 The capacity region of an N -node line network with de-
terministic BCs and node capacity constraints is given by the union
over all choices of P (wu, xu), u = 1, 2, . . . , N , of the (non-negative)
rates satisfying

max(R(u)
LR, R

(u)
RL) +Ru,LR +Ru,R +Ru,L +Ru ≤ Cu (49)

R
(u)
RL +Ru,LR ≤ I(Wu;Yu,u−1) (50)

R
(u)
LR +Ru,LR ≤ I(Wu;Yu,u+1) (51)

R
(u)
RL +Ru,LR +Ru,L ≤ H(Yu,u−1) (52)

R
(u)
LR +Ru,LR +Ru,R ≤ H(Yu,u+1) (53)

R
(u)
RL +Ru,LR +Ru,R +Ru,L

≤ I(Wu;Yu,u−1) +H(Yu,u−1Yu,u+1|Wu) (54)

R
(u)
LR +Ru,LR +Ru,R +Ru,L

≤ I(Wu;Yu,u+1) +H(Yu,u−1Yu,u+1|Wu). (55)

A sketch of the proof of this theorem is as follows. Achievability fol-
lows by [33, Theorem 2] with Su = Yu,u−1 and Tu = Yu,u+1. The
methods of [32,37,42] are used for broadcasting, and the binary linear
network codes of [54] are used to compress data through the nodes.
The converse follows in several steps. First, we determine the capacity
region of deterministic BCs with message side information by using the
methods in [32]. Second, we check that the capacity region of such BCs
is not increased by feedback. Third, we adapt the resulting capacity
bounds to line networks as was done above or in [33, Sec. IV.B] for
physically degraded BCs with feedback [17]. Finally, we apply PdE
bounds [30,31] to include the edge capacity constraint (49).

3.2.8 Broadcast Erasure Networks

Let {X}u be the alphabet ofXu, let | {X}u | be the cardinality of {X}u,
and let Lu = log2(| {X}u |). Suppose that Zu,u−1 and Zu,u+1 are
independent and let εu,u−1 = Pr[Zu,u−1 = 1] and εu,u+1 = Pr[Zu,u+1 =
1] for all u. The following theorem slightly generalizes the main result
of [20] and gives the capacity of line networks with broadcast erasure
channels.

Theorem 5 The capacity region of an N -node line network with broad-
cast erasure channels with independent erasure variables Zu,u−1 and
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Zu,u+1, u = 1, 2, . . . , N , and node capacity constraints is given by the
union of the (non-negative) rates satisfying (49) and

R
(u)
RL +Ru,LR +Ru,L

1− εu,u−1
+

Ru,R
1− εu,u−1εu,u+1

≤ Lu (56)

R
(u)
LR +Ru,LR +Ru,R

1− εu,u+1
+

Ru,L
1− εu,u−1εu,u+1

≤ Lu. (57)

We sketch a proof of this theorem. Achievability follows by combining
the network codes of [20] with the binary linear networks codes of [54].
For the broadcast bounds (56)-(57), we use the same analysis as in [20]
except generalized to include message side information. The converse
follows by “enhancing” every BC by giving one of the receivers both
channel outputs, as is done in [20] and [48]. Next, since every BC
is physically degraded, we can apply the same steps as in the proof
of [33, Theorem 3] (see Theorem 3 above) to get a collection of outer
bounds. Finally, we optimize these bounds over all distributions to
obtain (12)-(13). The constraint (49) again follows from PdE bounds.

3.3 Cognitive Channels

Two-sender, two-receiver channel models allow for various forms of
transmitter cooperation. When senders are unaware of each other’s
messages, we have the interference channel [5,52]. In wireless networks,
however, the broadcast nature of the wireless medium allows nodes
to overhear transmissions and possibly decode parts of other users’
messages. An encoder that has such knowledge can use it to improve
its own rate as well as the other user’s rate. The level of cooperation
and the resulting performance improvement will depend on the amount
of information the encoders share, as demonstrated in [13].

Channel models with cooperating nodes are of interest also for net-
works with cognitive users. Cognitive radio [44] technology is aimed
at developing smart radios that are both aware of and adaptive to the
environment. Such radios can efficiently sense the spectrum, decode in-
formation from detected signals and use that knowledge to improve the
system performance. This technology motivates information-theoretic
models that try to capture the cognitive radio characteristics. In that
vein, we here consider a two-sender, two-receiver channel model in
which, somewhat idealistically, we assume that cognitive capabilities
allow one user to know the full message of the other encoder, as shown
in Fig. 19. The capacity region for this channel is unknown in general,
although it has been determined for special cases. No existing coding
scheme is known to be uniformly better than other known techniques
for all channel characteristics and topologies.
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The interference channel with one cooperating encoder was dubbed
the cognitive radio channel and achievable rates were presented in
[13,14]. The capacity region for the strong interference regime in which
both receivers can decode both messages was determined in [41]. The
capacity region for the Gaussian case of weak interference was de-
termined in [61] and [26]. The results of [26, 61] were extended to
the Gaussian MIMO cognitive radio network and shown to achieve
the sum-capacity in [53]. The conclusions of [53] apply to the single-
antenna cognitive radio channel as well. A general encoding scheme
was recently proposed in [24]. Related work can also be found in [4,56].
Scaling laws for cognitive networks were analyzed in [15].

We here present a scheme that generalizes those in [41]- [26]. The
scheme is similar to the one in [24]: as in [24] and [13], an encoder
uses rate-splitting [5] to enable the other receiver to decode part of
the interference; the cognitive transmitter cooperates in sending the
other user’s message to its intended receivers and uses Gel’fand-Pinsker
(GP) binning [19] to reduce interference to its own receiver. The key
difference of our contribution to the prior work is in the way the binning
is performed.

An overview of the encoding scheme is given in the next section.
The channel model is described in Section 3.3.3. Details of the encod-
ing scheme are developed in Section 3.3.4. In Section 3.3.6, the en-
coding scheme is adapted for Gaussian channels and its performance is
compared to performance of other coding schemes. Our results demon-
strate improvements compared to the general scheme of [24]. In Sec-
tion 3.3.5, we present two outer bounds for the interference channel
with one cooperating encoder. The first bound is based on [47] and
the only difference is in the input distribution over which the opti-
mization is performed. We then present an outer bound for the strong
interference case that is of the same form as the one in [41, Sec.V] and
compare it to the achievable rate region for Gaussian channels.

3.3.1 Overview of the Encoding Strategy

The channel model in Fig. 19 has elements of both the interference
channel (IC) and the broadcast channel (BC). Encoding techniques
developed for either of these channel models are therefore useful for our
model. If the message W2 of encoder 2 was not known at the cognitive
encoder, the channel would reduce to the IC. The best achievable rate
region for the IC is achieved by rate-splitting [5, 21]: each encoder
divides its message into two parts and encodes each of them with a
separate codebook. This allows receivers to decode one of the other
user’s messages and cancel a part of the interference that it would
otherwise create. Rate-splitting was applied to the cognitive radio
channel model in [13,24]. In the encoding scheme presented here, rate-
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splitting is performed at the cognitive encoder.
The cognitive encoder can employ a number of techniques in addi-

tion to rate-splitting. For example, to improve the rate for the noncog-
nitive communicating pair, the cognitive encoder can cooperate by en-
coding W2 to help convey it to the other decoder. On the other hand,
any signal carrying information about W2 creates interference to the
cognitive encoder’s receiver. This interference is known at the cog-
nitive transmitter and therefore techniques for precoding against the
interference, e.g. GP binning [19] or dirty-paper coding (DPC) [9],
can be employed. In fact, GP binning is crucial for the cognitive ra-
dio channel: together with cooperation, it achieves capacity in certain
scenarios [26, 53, 61]. It is not surprising that DPC brings gains in
the Gaussian cognitive radio channel: if the non-cognitive encoder is
silent, we have a broadcast channel from the cognitive encoder to the
two receivers, for which DPC is the optimal strategy [57,59].

In general, however, there are two differences at the cognitive en-
coder from the classical GP setting. First, the interference carries
useful information for receiver 2. Second, the interference is a codebook
of some rate and can thus have lower entropy than in the GP setting.
As we will see in Sec. 3.3.2, the latter can be exploited to achieve a
higher rate.

We note that due to rate-splitting, there is a common part of W1

decoded at the both receivers and precoded against interference. Since
the signal carrying this common message experiences different inter-
ference at the two receivers, we use the ideas of [45] and [27] that re-
spectively extend [19] and [9] to channels with different states known
non-causally to the encoder. For Gaussian channels, DPC is general-
ized to carbon-copying onto dirty paper [27] to adjust to the interference
experienced at both receivers.

Summary of Techniques and Special Cases

Based on the above discussion, a number of techniques may be applied
to exploit the additional knowledge of the cognitive encoder:

• Rate-splitting at encoder 1: to improve R2 through interference
cancelation at decoder 2.

• GP binning and binning against a codebook: to improve R1 by
precoding against interference. This approach also allows decoder
1 to decode message W2 (or part of it) when R2 is small, as will
be shown in Sec. 3.3.2.

• Carbon-copying onto dirty paper: to improve the rate of the
common message sent by the cognitive encoder.

• Cooperation: Encoder 1 contributes to R2 by encoding W2.
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A general encoding scheme that combines these techniques is described
in Section 3.3.4. While this general encoding scheme may not achieve
capacity in all scenarios, there are a number of special cases in the
scheme for which a subset of techniques suffice to achieve capacity, as
we now describe:

1. Strong interference: both decoders can decode both messages
with no rate penalty, so there is no need for either rate-splitting
or binning. Superposition coding achieves capacity [41].

2. Cognitive decoder has to decode both messages: again, there
is no need for binning. Rate-splitting and superposition coding
achieve capacity [25,38].

3. Weak interference at receiver 2: there is no need for a common
part of message W1 and hence for rate-splitting. DPC and coop-
eration achieve capacity for Gaussian channels [26,53,61].

3.3.2 Rate Improvement due to Binning Against a Code-
book

For the communication between the cognitive transmitter and its re-
ceiver, a codebook carrying W2 creates interference. The situation is
depicted in Fig. 20, where S plays the role of the codebook of rate Rs
interfering with the communication of message W at rate R. While in
the GP problem the interference S is generated by a discrete memo-
ryless source, the interference in the cognitive setting is a codebook of
some rate Rs. The next lemma reflects the fact that when Rs is small,
this can be exploited for potential rate gains. We prove this Lemma
in [40, Appendix B].

Lemma 1 For the communication situation of Fig. 20, the rate

R ≤ max
PU|S ,f(·)

min{I(X;Y |S),

max{I(U, S;Y )−Rs, I(U ;Y )− I(U ;S)}} (58)

is achievable. For I(S;U, Y ) ≤ Rs ≤ H(S), binning achieves the GP
rate given by the second term in (58). For Rs ≤ I(S;U, Y ), superposi-
tion coding achieves the rate given by the first term in (58). The two
cases are shown in Fig. 21.

Remark 4 Rate (58) can be written as

R ≤ max
PU|S ,f(·)

{I(X,S;Y )

−max{I(S;Y ),min{Rs, I(U, Y ;S)}}. (59)
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From (58) and (59), we observe that I(S;U, Y ) ≤ Rs ≤ H(S) corre-
sponds to the classical GP setting. Potential rate improvement comes
for Rs ≤ I(S;U, Y ). Interestingly, in this case the receiver decodes
both indexes (w, j), thus learning both its message and the interfer-
ence. A related setting in which both data and the channel state
information are communicated to the receiver was analyzed in [10,11].

In the cognitive setting of Fig. 19, index j carries information about
W2. The implication is that, when Rs is small, receiver 1 will decode a
part (or the whole) of W2 without having encoder 2 rate-split to send
common information in the sense of [5, 21].

Recall that, due to rate-splitting, encoder 1 uses two codebooks
to send a common and a private index. We denote these respective
codebooks as (UN1c , U

N
1a). We can distinguish four cases depending on

whether the two codebooks are generated through binning or superpo-
sition coding with respect to XN

2 :

1. Binning: both (UN1c , U
N
1a) are binned against the codebook XN

2 of
the non-cognitive encoder.

2. Superposition coding: codebooks are superimposed on XN
2 .

3. Binning then superposition coding: UN1c is binned against XN
2 ,

and UN1a is superimposed on (XN
2 , U

N
1c).

4. Superposition coding then binning: UN1c is superimposed on XN
2 ;

UN1a is superimposed on UN1c and binned against XN
2 .

In the last two cases, decoder 1 can decode W2 due to superposition
coding of UN1a or UN1c on XN

2 , as shown in Lemma 1. The setting thus
corresponds to the cognitive radio with degraded message sets. For
this channel model, superposition coding achieves capacity [25, 38].
The last two cases can therefore bring no rate improvement. The
achievable rate region is the union of two rate regions achieved by
binning or superposition coding. We will derive these regions after
formally defining the problem in the next section. We remark that
in the above encoding scheme, codebook UN1a is always superimposed
on UN1c . The other encoding choice would be to use binning for UN1a
against the codebook UN1c .

Finally, we note that encoder 2 also uses rate-splitting and forms
two codebooks (XN

2a, X
N
2b) using superposition coding. Encoder 1 bins

against both codebooks and does not decode a part of W2. Following
Lemma 1, the respective rates R2a and R2b could be chosen such that
(UN1a, U

N
1c) are binned against one of the two codebooks, but superim-

posed on the other. That would facilitate decoding a part of W2 at
receiver 1.
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3.3.3 Channel Model

Consider a channel with finite input alphabets X1,X2, finite output al-
phabets Y1,Y2, and a conditional probability distribution p(y1, y2|x1, x2),
where (x1, x2) ∈ X1 × X2 are channel inputs and (y1, y2) ∈ Y1 × Y2

are channel outputs. Each encoder t, t = 1, 2, wishes to send a mes-
sage Wt ∈ {1, . . . ,Mt} to decoder t in N channel uses. Message W2 is
also known at encoder 1 (see Fig. 19). The channel is memoryless and
time-invariant in the sense that

p(y1,n, y2,n|xn1 , xn2 , yn−1
1 , yn−1

2 , w̄)
= pY1,Y2|X1,X2(y1,n, y2,n|x1,n, x2,n) (60)

for all n, where X1, X2 and Y1, Y2 are random variables representing
the respective inputs and outputs, w̄ = [w1, w2] denotes the messages
to be sent, and xnt =

[
xt,1, . . . , xt,n

]
. We will follow the convention

of dropping subscripts of probability distributions if the arguments of
the distributions are lower case versions of the corresponding random
variables.

An (M1,M2, N, Pe) code has two encoding functions

XN
1 = f1(W1,W2) (61)

XN
2 = f2(W2) (62)

two decoding functions

Ŵt = gt(Y Nt ) t = 1, 2 (63)

and an error probability

Pe = max{Pe,1, Pe,2} (64)

where, for t = 1, 2, we have

Pe,t =
∑

(w1,w2)

1
M1M2

P [gt(Yt) 6= wt|(w1, w2) sent] . (65)

A rate pair (R1, R2) is achievable if, for any ε > 0, there is an (M1,M2, N, Pe)
code such that

Mt ≥ 2NRt , t = 1, 2, and Pe ≤ ε.

The capacity region of the interference channel with a cooperating
encoder is the closure of the set of all achievable rate pairs (R1, R2).
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3.3.4 Achievable Rate Region

To obtain an inner bound, we employ rate-splitting. We let

R1 = R1a +Rc (66)
R2 = R2a +R2b (67)

for nonnegative R1a, Rc, R2a, R2b, which we now specify.
In the encoding scheme, encoder 2 uses superposition coding with

two codebooks XN
2a, X

N
2b . Encoder 1 repeats the steps of encoder 2 and

adds binning: it encodes the split message W1 with two codebooks
which are Gel’fand-Pinsker precoded against XN

2a, X
N
2b . In particular:

1. Binning against XN
2a, X

N
2b is used to create a codebook UN1c of

common rate Rc.

2. Binning against XN
2a, X

N
2b conditioned on U1c is used to create a

codebook UN1a with private rate R1a.

The encoding structure is shown in Fig. 22.
We have the following result that we prove in [40, Appendix A].

Theorem 6 (joint decoding) Rates (66)-(67) are achievable if

R1a ≤ I(U1a;Y1|U1c, Q)− I(U1a;X2a, X2b|U1c, Q) (68)
R1 ≤ I(U1c, U1a;Y1|Q)− I(U1c, U1a;X2a, X2b|Q) (69)
R2 ≤ I(X2;Y2, U1c|Q) (70)
R2 +Rc ≤ I(X2, U1c;Y2|Q) (71)
R2b ≤ I(X2b;Y2, U1c|X2a, Q) (72)
R2b +Rc ≤ I(X2b, U1c;Y2|X2a, Q) (73)

for some joint distribution that factors as

p(q)p(x2a, x2b, u1c, u1a, x1, x2|q)p(y1, y2|x1, x2) (74)

and for which the right-hand sides of (68)-(69) are nonnegative. Q is
a time-sharing random variable.

The following theorem is proved following similar steps as the proof of
Thm. 6 and is omitted. Details can be found in [39].

Theorem 7 (sequential decoding) Rates (66)-(67) are achievable if

R1a ≤ I(U1a;Y1|U1c, Q)− I(U1a;X2|U1c, Q) (75)
Rc ≤ min{I(U1c;Y1|Q), I(U1c;Y2, X2a|Q)}

− I(U1c;X2|Q) (76)
R2a ≤ I(X2a;Y2|Q) (77)
R2b ≤ I(X2b;Y2, U1c|X2a, Q) (78)
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for some joint distribution that factors as

p(q)p(x2a, x2b, u1c, u1a, x1, x2|q)p(y1, y2|x1, x2)

and for which the right-hand sides of (75)-(76) are nonnegative.

Remark 5 The rates of Thm. 6 include the rates of Thm. 7.

Remark 6 Thm. 6 includes the rates of the following schemes:

• The scheme of [61, Thm 3.1]: set X2a = ∅, U1c = ∅, X2b =
(X2, U) and U1a = V so that (68)-(74) become

R2 ≤ I(X2, U ;Y2) (79)
R1 ≤ I(V ;Y1)− I(V ;X2, U) (80)

for p(u, x2)p(v|u, x2)p(x1|v).

• The scheme of [26, Lemma 4.2]: set X2a = ∅, X2b = X2, U1a =
∅, and R1 = Rc, R2 = R2b so that (68)-(74) become

R2 ≤ I(X2;Y2|U1c)
R1 ≤ min{I(U1c;Y1), I(U1c;Y2)} (81)

for p(x2)p(u1c). The strategy in [26] considers the case when

I(U1c;Y1) ≤ I(U1c;Y2). (82)

.

• Carbon-copy on dirty paper [27]: set X2a = ∅, U1a = ∅.
• For X2a = ∅, our scheme closely resembles the scheme in [24].

One difference in our scheme is that the two binning steps are not
done independently which brings potential improvements. An-
other difference is in the evaluation of error events.

It is also interesting to compare our scheme to the encoding scheme
in [13]. The latter combines rate-splitting at both users, with two-step
binning at the cognitive user. Each user sends a private index decoded
by its receiver and a common index decoded by both. Again, one dif-
ference in our scheme is that two binning steps are not independent.
Another is that in our scheme the cognitive encoder cooperates by en-
coding W2.

We next exploit Lemma 1.
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An Achievable Rate Region with Superposition Coding

Consider a joint distribution (74) and rate R2 that satisfies

R2 ≤ I(X2;U1c, Y1) (83)
R2 ≤ I(X2;U1a, Y1|U1c). (84)

From Lemma 1, we know that under conditions (83) and (84), super-
position of UN1c and UN1a with XN

2 should be used instead of binning.
The encoding scheme of the cognitive encoder reduces to rate-splitting
and superposition coding. The scheme and the obtained rates reduce
to that of [24, Thm. 5] derived for the cognitive radio with degraded
message sets, in which the cognitive decoder needs to decode both
messages. No rate-splitting at encoder 2 is needed. The resulting
achievable rates (R1, R2) satisfy

R1a ≤ I(X1;Y1|X2, U1c)
R1 ≤ I(X1;Y1|X2)
R1 +R2 ≤ I(X1, X2;Y1)
Rc +R2 ≤ I(U1c, X2;Y2) (85)

for some joint input distribution p(x2, u1c, x1). After Fourier-Motzkin
elimination [36], we obtain the following region.

Theorem 8 [25]. Achievable rates (R1, R2) satisfy

R1 ≤ I(X1;Y1|X2)
R2 ≤ I(U1c, X2;Y2)
R1 +R2 ≤ I(X1;Y1|X2, U1c) + I(U1c, X2;Y2)
R1 +R2 ≤ I(X1, X2;Y1) (86)

for some joint input distribution p(x2, u1c, x1).

Remark 7 The above region is the capacity region for the cognitive
radio with degraded message sets: the converse follows from [38] where
a more general case of confidential messages is analyzed.

3.3.5 Outer Bounds

We next derive two capacity outer bounds proved in [40, Appendix C].

Theorem 9 The union of the set of rate pairs (R1, R2) satisfying

R1 ≤ I(V,U1;Y1) (87)
R2 ≤ I(V,U2;Y2) (88)
R1 +R2 ≤ min{I(V,U1;Y1) + I(U2;Y2|U1, V ), (89)

I(U1;Y1|U2, V ) + I(V,U2;Y2)} (90)
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for input distributions p(v, u1, u2, x1, x2) that factor as

p(u1)p(u2)p(v|u1, u2)p(x2|u2)p(x1|u1, u2) (91)

is an outer bound to the capacity region.

Remark 8 We observe that (87)-(90) is of the same form as the outer
bound for the broadcast channel in [47, Sect. 3]. The difference is the
factorization of the input distribution.

Remark 9 One can restrict attention to distributions (91) where X2

is a function of U2 and X1 is a function of (U1, U2). The bounds (87)-
(90) can then be written as

R1 ≤ I(V,U1;Y1) (92)
R2 ≤ I(V,U2, X2;Y2) (93)
R1 +R2 ≤ min{I(V,U1;Y1) + I(X1, X2;Y2|U1, V ), (94)

I(X1;Y1|X2, U2, V ) + I(V,U2, X2;Y2)} (95)

From (93) and (95), we obtain the outer bound of [61, Thm. 3.2]:

R1 ≤ I(X1;Y1|X2) (96)
R2 ≤ I(U,X2;Y2) (97)
R1 +R2 ≤ I(X1;Y1|X2, U) + I(U,X2;Y2) (98)

where we use the notation U = [U2, V ] and also add (96) as it follows
by standard methods. The probability distribution factors as

p(u, x1, x2)p(y1, y2|x1, x2). (99)

Interestingly, (96)-(99) was shown to be tight under weak interfer-
ence [61, Def. 2.3] and in particular for Gaussian channels with weak
interference [26, 61].

The following theorem, proved in [40, Appendix D], gives a simple
capacity outer bound in strong interference.

Theorem 10 For an interference channel with one cooperating en-
coder satisfying

I(X1;Y1|X2) ≤ I(X1;Y2|X2) (100)

for all input distributions p(x1, x2), the set of rate pairs (R1, R2) sat-
isfying

R1 ≤ I(X1;Y1|X2) (101)
R1 +R2 ≤ I(X1, X2;Y2) (102)

for all input distributions p(x1, x2) is an outer bound to the capacity
region.
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Remark 10 The bound (102) reflects the fact that, because decoder
2 experiences strong interference, as given by (100), it can decode W1

with no rate penalty.

This bound is evaluated for Gaussian channels in (112).

3.3.6 Gaussian Channel

To illustrate our results more concretely, consider the Gaussian inter-
ference channel described by

Y1 = X1 + aX2 + Z1 (103)
Y2 = bX1 +X2 + Z2 (104)

where Zt ∼ N [0, 1], E[X2
t ] ≤ Pt, t = 1, 2 and N [0, σ2] denotes the

normal distribution with zero mean and variance σ2.

Previous Work: Capacity Results

The capacity region for Gaussian cognitive radio channels (103)-(104)
was determined for the case of weak interference, i.e., b ≤ 1, in [26,
61]. The optimum coding strategy at the cognitive encoder consists of
encoding message W1 via DPC while treating XN

2 as interference, and
superposition coding to help convey W2 to receiver 2. Receiver 1 does
not suffer interference due to DPC. Because the interference is weak,
receiver 2 does not attempt to decode the unwanted message.

For b ≥ 1, the interference at receiver 2 is stronger than in the
previous case, and it is plausible to expect that decoding W1 (or a part
of it) may be beneficial. In fact, we observe from (103)-(104) that after
decoding W2, decoder 2 has a better observation of X1 than receiver
1, since b ≥ 1. Therefore, decoder 2 can decode W1. However, the
conditions under which decoder 2 can decode W1 also depend on the
encoding/decoding approach. In particular, the capacity is known for
the strong interference regime in which both decoders can decode both
messages. The considered channel becomes a compound multiaccess
(MAC) channel consisting of two MAC channels, one to each receiver.
The strong interference conditions under which this is optimal were
determined in [41] leading to the capacity region. These conditions
depend on P1 and P2. For P1 = P2 they simplify to b > 1 and a > b.
Encoder 1 uses a superposition code

X1 = X1c +
√
ᾱP1

P2
X2 (105)

where X2 ∼ N [0, P2], X1c ∼ N [0, αP1] and 0 ≤ α ≤ 1. Fig. 23 shows
the range of channel gains a and b for which the above capacity results
apply. In Fig. 23, we choose P1 = P2.
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When the channel conditions do not allow decoding of both mes-
sages at decoder 1, they may still enable decoder 2 to decode W1. [26,
Lemma. 4.2] considers such a case, assuming superposition coding
(105). Decoder 2 sequentially decodes: it first decodes W1, subtracts
the part of the received signal that carries it, and decodes W2 in the
interference-free channel. The obtained rates are given by (81). The
conditions under which this encoding/decoding procedure is optimal
are given by (82).

When these conditions are not satisfied, there may be other inter-
esting scenarios for which the presented techniques lead to capacity
results. For example, consider the case when a = 0 in (103). Then
(103)-(104) describe a Z-channel where receiver 1 does not suffer in-
terference and the strong interference conditions of [41] are not satis-
fied. Suppose that encoder 1 is non-cooperating, aimed to achieve the
largest possible R1. It follows that α = 0 in (105). Consider the case
for which capacity is unknown, i.e., conditions (82) are not satisfied:

1
2

log(1 + P1) ≥ 1
2

log
(

1 +
b2P1

1 + P2

)
. (106)

For this case, the achievable rates evaluate to

R1 ≤ 1
2

log(1 + P1)

R1 +R2 ≤ 1
2

log(1 + b2P1 + P2). (107)

For Gaussian channels, the outer bound (101)-(102) is given by (112).
Due to the above assumption of a non-cooperative cognitive encoder,
X1 and X2 are independent, and ρ = 0 in (112). Therefore, the outer
bound (112) coincides with the achievable rates (107), yielding capac-
ity.

As the above discussion illustrates, there are still regimes for which
the capacity of Gaussian cognitive channels is unknown. This moti-
vates evaluating the general strategy proposed in Thm. 6. We present
such an evaluation next.

Numerical Results

We evaluate the rates of Thm. 6 for the special case X2a = ∅ and
Q = ∅. The rates of Thm.6 reduce to

R1a ≤ I(U1a;Y1|U1c)− I(U1a;X2|U1c)
R1 ≤ I(U1c, U1a;Y1)− I(U1c, U1a;X2)
R2 ≤ I(X2;Y2, U1c)
R2 +Rc ≤ I(X2, U1c;Y2). (108)
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To simplify (108), we express the conditional entropies in terms of
joint entropies, recall that R1 = Rc +R1a, and apply Fourier-Motzkin
elimination to obtain

R1 ≤ I(U1c, U1a;Y1)− I(U1c, U1a;X2)
R2 ≤ I(X2;Y2, U1c)
R2 ≤ I(X2, U1c;Y2)
R1 +R2 ≤ I(X2, U1c;Y2) + I(U1a;Y1, U1c)

− I(U1a;X2, U1c). (109)

It is also interesting to evaluate the rates of Thm. 7 achieved with
sequential decoding for X2a = ∅, Q = ∅. This evaluation results in

R1a ≤ I(U1a;Y1|U1c)− I(U1a;X2|U1c)
Rc ≤ min{I(U1c;Y1), I(U1c;Y2)} − I(U1c;X2)
R2 ≤ I(X2;Y2, U1c). (110)

Remark 11 When I(U1c;Y1) ≤ I(U1c;Y2), decoder 2 can decode W1.
Thus, there is no need to rate split at encoder 1 and we choose U1a = ∅.
It follows from (109) and (110) that for this case the same rates can
be achieved by sequential decoding or by joint decoding.

Remark 12 We observe from (110) that Rc, being a common rate, is
bounded by the worst channel, as reflected by the min{I(U1c;Y1), I(U1c;Y2)}
term. If I(U1c;Y1) > I(U1c;Y2), transmitting X2a will allow decoder 2
to decode part of W2 before decoding Wc. It will also serve as an obser-
vation when decoding Wc as suggested by the expression I(U1c;Y2, X2a)
in (76). This will improve the common rate Rc.

We evaluate region (109) for

X2 ∼ N [0, P2], X1c ∼ N [0, αβP1], X1a ∼ N [0, αβ̄P1]

U1c = X1c + λ1X2

U1a = X1a + λ2X2

X1 = X1c +X1a +
√
ᾱP1

P2
X2 (111)

where 0 ≤ α, β ≤ 1 and 0 ≤ λ1, λ2. Parameters α and β determine the
amount of power that the cognitive user dedicates for cooperation and
for sending the common message, respectively.

We compare the region (109) to the outer bound of Thm. 10 which
for Gaussian channels is given by the following corollary:
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Corollary 1 When b ≥ 1, any achievable rate pair (R1, R2) satisfies

R1 ≤ 1
2

log(1 + (1− ρ2)P1)

R1 +R2 ≤ 1
2

log(1 + b2P1 + P2 + 2ρ
√
b2P1P2) (112)

for some ρ, 0 ≤ ρ ≤ 1.

Fig. 24 shows the achievable rate region (109) and the outer bound
(112) for channel gain values a2 = 0.3, b2 = 2 and equal powers P1 =
P2 = 6. Thm. 6 gives larger rates than those of [24, Thm. 5].

When encoder 2 does not transmit (i.e. P2 = 0), the channel
reduces to the BC in which there is only the cooperating encoder com-
municating to two receivers. Unlike the BC channel rate region, the
region for the IC with one cooperating encoder is flat for small values of
R2, reflecting that a cognitive transmitter does not need to cooperate
in this regime. It can instead use its full power to precode and transmit
W1 at the single-user rate as if the second user was not present. On
the other hand, at R1 = 0 the cooperating encoder fully helps encoder
2, i.e. α = 0 and user 2 benefits from the coherent combining gain as
indicated by the rate expression

R2,max =
1
2

log

1 +

(
1 + b

√
P1

P2

)2

P2

 .

The achievable rates are very close to the outer bound, especially for
large values of R2, in the regime where the cognitive encoder dedicates
more of its power to cooperate.

Fig. 25 shows achievable rates for different values of P2 and fixed
P1. As P2 decreases, the performance approaches the rate achieved
in the BC with only the cooperating encoder transmitting to the two
receivers. Since in the BC encoder 2 is not present, the rate region does
not depend on P2 and is given by the dashed line. Fig. 26 shows the
effect of reducing power at the cognitive encoder, keeping P2 constant.
This has a strong impact, drastically reducing R1.

For the Gaussian channel, the rates achieved with sequential encod-
ing (110) can be evaluated for the choice of random variablesX2, X1, U1a, X1a

as in (111). U1c carries a common message and is precoded against in-
terference. Since the two channels from encoder 1 to the two receivers
experience different interference, the carbon-copy method of [27] can
be used. More details on this approach are presented in [39]. Fig. 27
shows the performance of the two decoding schemes which can differ
significantly.
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3.3.7 Discussion

A comparison of our results with [13] would be an interesting next step.
As explained in Sec. 3.3.4, the latter combines rate-splitting at both
users, with two-step binning at the cognitive user. One of the differ-
ences is that, in our scheme the cognitive encoder cooperates by en-
coding W2. However, it is unclear whether our strategy generalizes the
scheme in [13], or whether a combination of the two techniques would
achieve higher rates. We also compared the proposed scheme to the
outer bound that we developed for the strong interference regime. We
further developed a new outer bound that extends the Nair-El Gamal
broadcast outer bound. Evaluating this bound for specific channels
such as Gaussian channels may give capacity results for special cases.

The cognitive radio channel shares some characteristics of both ICs
and BCs. Combining encoding strategies developed for either of the
two channel models therefore seems a natural approach. However, the
optimality of a particular encoding scheme seems to be in part dic-
tated by the channel conditions: for the Gaussian channel in which
decoder 2 experiences weak interference, dirty-paper coding achieves
capacity. On the other hand, strong interference conditions may al-
low the cognitive receiver to decode the message not intended for him
and therefore DPC against that message is not needed; superposition
coding and rate-splitting achieve capacity. An even simpler scheme suf-
fices when both receivers experience strong interference and can both
decode the two messages. Neither DPC nor rate-splitting is needed; su-
perposition coding achieves capacity. The encoding scheme presented
here is a combination of rate-splitting, GP binning and superposition
coding. We believe that this general encoding scheme may achieve
capacity for certain special cases related to the channel or specific en-
coding/decoding constraints.
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(a) One Obstacle - All nodes (b) Three Obstacles - All nodes

Figure 10: Working Around Obstacles (k=30)
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(a) (b)

(c) (d)

(e) (f)

Figure 11: Sensor Redeployment with k=30
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(a) t=100 (b) t=108

(c) t=116 (d) t=120

Figure 12: Entrapment: Bi-phase, 8 seeds for each phase, are planted over
a 160×160 node field with k=25
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(a) t = 200 (b) t = 204

(c) t = 208 (d) t = 212

(e) t = 216 (f) t = 220

Figure 13: Greenberg-Hastings Automaton on R2 (k=20)
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Figure 14: Relay channel geometry.
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Figure 15: Rates for a half-duplex relay, P1/N = P2/N = 10, Huv = 1 for
all (u, v), and α = 3.
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Figure 16: Rates for a half-duplex relay, P1/N = P2/N = 10, phase fading,
and α = 3.
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Figure 17: Rates for a half-duplex relay, P1/N = P2/N = 10, Rayleigh
fading, and α = 3.
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Figure 18: A line network with broadcasting and node capacity constraints.
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Figure 22: Encoding structure.
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channel is known. For b < 1 the channel has weak interference and the
capacity was determined in [26, 61]. Strong interference conditions for case
P1 = P2 are b > 1 and a > b. The capacity was determined in [41].
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Figure 24: Achievable rates of Thm. 6 and [24, Thm.5] and outer bound
of Cor. 1. Also shown is the capacity region of a BC from the cooperative
encoder, i.e. the case P2 = 0.
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Figure 25: Achievable rates for different values of P2.
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Figure 26: Impact of reduced power of the cognitive transmitter. Rates
achieved with Thm. 1 are shown in solid lines and rates of [24] are shown
with dotted lines. Dash-dotted lines show the outer bound (112).
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Figure 27: Comparison of achievable rates with joint and sequential decod-
ing.
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